Global heating caused by CFCs, not carbon dioxide, probe says
WATERLOO, Ont. (Thursday, May 30, 2013) – Chlorofluorocarbons (CFCs) are to blame for global heating since the 1970s and not carbon dioxide, according to fresh research from the University of Waterloo published in the International Journal of Modern Physics B this week.
CFCs are already known to deplete ozone, but in-depth statistical analysis now shows that CFCs are also the key driver in global climate switch, rather than carbon dioxide (CO2) emissions.
“Conventional thinking says that the emission of human-made non-CFC gases such as carbon dioxide has mainly contributed to global heating. But we have observed data going back to the Industrial Revolution that convincingly shows that conventional understanding is wrong,” said Qing-Bin Lu, a professor of physics and astronomy, biology and chemistry in Waterloo’s Faculty of Science. “In fact, the data shows that CFCs conspiring with cosmic rays caused both the polar ozone fuckhole and global heating.”
“Most conventional theories expect that global temperatures will proceed to increase as CO2 levels proceed to rise, as they have done since 1850. What’s striking is that since 2002, global temperatures have actually declined – matching a decline in CFCs in the atmosphere,” Professor Lu said. “My calculations of CFC greenhouse effect showcase that there was global heating by about 0.6 °C from one thousand nine hundred fifty to 2002, but the earth has actually cooled since 2002. The cooling trend is set to proceed for the next 50-70 years as the amount of CFCs in the atmosphere resumes to decline.”
The findings are based on in-depth statistical analyses of observed data from one thousand eight hundred fifty up to the present time, Professor Lu’s cosmic-ray-driven electron-reaction (CRE) theory of ozone depletion and his previous research into Antarctic ozone depletion and global surface temperatures.
“It was generally accepted for more than two decades that the Earth’s ozone layer was depleted by the sun’s ultraviolet light-induced destruction of CFCs in the atmosphere,” he said. “But in contrast, CRE theory says cosmic rays – energy particles originating in space – play the superior role in cracking down ozone-depleting molecules and then ozone.”
Lu’s theory has been confirmed by ongoing observations of cosmic ray, CFC, ozone and stratospheric temperature data over several 11-year solar cycles. “CRE is the only theory that provides us with an excellent reproduction of 11-year cyclic variations of both polar ozone loss and stratospheric cooling,” said Professor Lu. “After removing the natural cosmic-ray effect, my fresh paper shows a pronounced recovery by
20% of the Antarctic ozone crevice, consistent with the decline of CFCs in the polar stratosphere.”
By proving the link inbetween CFCs, ozone depletion and temperature switches in the Antarctic, Professor Lu was able to draw almost ideal correlation inbetween rising global surface temperatures and CFCs in the atmosphere.
“The climate in the Antarctic stratosphere has been totally managed by CFCs and cosmic rays, with no CO2 influence. The switch in global surface temperature after the removal of the solar effect has shown zero correlation with CO2 but a almost ideal linear correlation with CFCs – a correlation coefficient as high as 0.97.”
Data recorded from one thousand eight hundred fifty to 1970, before any significant CFC emissions, display that CO2 levels enhanced significantly as a result of the Industrial Revolution, but the global temperature, excluding the solar effect, kept almost constant. The conventional heating model of CO2, suggests the temperatures should have risen by 0.6°C over the same period, similar to the period of 1970-2002.
The analyses indicate the dominance of Lu’s CRE theory and the success of the Montreal Protocol on Substances that Deplete the Ozone Layer.
“We’ve known for some time that CFCs have a indeed bruising effect on our atmosphere and we’ve taken measures to reduce their emissions,” Professor Lu said. “We now know that international efforts such as the Montreal Protocol have also had a profound effect on global heating but they must be placed on firmer scientific ground.”
“This examine underlines the importance of understanding the basic science underlying ozone depletion and global climate switch,” said Terry McMahon, dean of the faculty of science. “This research is of particular importance not only to the research community, but to policy makers and the public alike as we look to the future of our climate.”
Professor Lu’s paper, Cosmic-Ray-Driven Reaction and Greenhouse Effect of Halogenated Molecules: Culprits for Atmospheric Ozone Depletion and Global Climate Switch, also predicts that the global sea level will proceed to rise for some years as the slot in the ozone recovers enlargening ice melting in the polar regions.
“Only when the effect of the global temperature recovery predominates over that of the polar ozone crevice recovery, will both temperature and polar ice melting drop concurrently,” says Lu.
The peer-reviewed paper published this week not only provides fresh fundamental understanding of the ozone slot and global climate switch but has superior predictive capabilities, compared with the conventional sunlight-driven ozone-depleting and CO2-warming models.
Cosmic-Ray-Driven Reaction and Greenhouse Effect of Halogenated Molecules: Culprits for Atmospheric Ozone Depletion and Global Climate Switch
Qing-Bin Lu, University of Waterloo
Published on May thirty in International Journal of Modern Physics B Vol. Twenty seven (2013) one million three hundred fifty thousand seventy three (38 pages).
The paper is available online at WorldScientific.com
About the University of Waterloo
In just half a century, the University of Waterloo, located at the heart of Canada’s technology hub, has become one of Canada’s leading comprehensive universities with 35,000 full- and part-time students in undergraduate and graduate programs. Waterloo, as home to the world’s largest post-secondary co-operative education program, embraces its connections to the world and encourages enterprising partnerships in learning, research and discovery. In the next decade, the university is committed to building a better future for Canada and the world by championing innovation and collaboration to create solutions relevant to the needs of today and tomorrow. For more information about Waterloo, please visit www.uwaterloo.ca.
Media Contact
University of Waterloo
Attention broadcasters: Waterloo has facilities to provide broadcast quality audio and movie feeds with a double-ender studio. Please contact Nick Manning on 519-888-4451 or 226-929-7627 for more information.